I have modified everything for *WiFi 7 and it is no longer hackable

No SSID, SSID can be hidden, New Encryption keys, Mac Address that cannot be spoofed, New AI Algorithms, WiFi range can  be extended or restricted, New data transmission speed for WiFi7 beyond MIMO, New spread spectrum technology that does not require 100% connection all the time where data packets are merged with AI Algorithms, Beacon swarm cannot be enforced, pfSense for increased speeds and security with Firewalls and VPNs, I have covered all the vulnerabilities for WiFi 7, I do not think the IETF can beat me at this, I did everything in 1 hour. Next, the testing and experimental phase. That is not my job since everybody fool around with my work.

*Copyright by United Nations China

Maximizing Performance in Congested Environments

Designed for high-density connectivity, Wi-Fi 6 offers up to a four-fold capacity increase over its Wi-Fi 5 predecessor. With Wi-Fi 6, multiple APs deployed in dense device environments can collectively deliver required quality-of-service (QoS) to more clients with more diverse usage profiles. This is made possible by a range of technologies – such as BSS Coloring – which maximizes network performance by working even within heavily congested, co-channel interference environments. From our perspective, BSS Coloring will play a critical role in helping Wi-Fi evolve into a collision-free, deterministic wireless technology as the IEEE looks to integrate future iterations of the mechanism into new wireless standards to support the future of Wi-Fi and beyond.

Interested in learning more about 802.11ax? Read the related articles below:

The Target Wake Time mechanism first appeared in the IEEE 802.11ah “Wi-Fi HaLow” standard.

Published in 2017, the low-power standard is specifically designed to support the large-scale deployment of IoT infrastructure – such as stations and sensors – that intelligently coordinate signal sharing. The TWT feature further evolved with the IEEE 802.11ax standard, as stations and sensors are now only required to wake and communicate with the specific Beacon(s) transmitting instructions for the TWT Broadcast sessions they belong to. This allows the wireless IEEE 802.11ax standard to optimize power saving for many devices, with more reliable, deterministic and LTE-like performance.

As Maddalena Nurchis and Boris Bellalta of the Universitat Pompeu Fabra in Barcelona noted in a recent paper, TWT also “opens the door” to fully maximizing new MU capabilities in 802.11ax by supporting the scheduling of both MU-DL and MU-UL transmissions. In addition, TWT can be used to collect information from stations, such as channel sounding and buffers occupancy in pre-defined periods. Last, but certainly not least, TWT can potentially help multiple WLANs in dense deployment scenarios reach consensus on non-overlapping schedules to further improve Overlapping Basic Service Set (OBSS) co-existence.

Author: Gilbert Tan TS

IT expert with more than 20 years experience in Multiple OS, Security, Data & Internet , Interests include AI and Big Data, Internet and multimedia. An experienced Real Estate agent, Insurance agent, and a Futures trader. I am capable of finding any answers in the world you want as long as there are reports available online for me to do my own research to bring you closest to all the unsolved mysteries in this world, because I can find all the paths to the Truth, and what the Future holds. All I need is to observe, test and probe to research on anything I want, what you need to do will take months to achieve, all I need is a few hours.​

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s